Project description
Melioidosis is a highly infectious disease caused by the Gram-negative bacterium Burkholderia pseudomallei, which is characteristic from tropical regions such as Southeast Asia and Northern Australia. The bacterium can be transmitted through direct contact with contaminated water or soil or by inhalation of dust and contaminated water droplets suspended in the air. Representing a potential biological weapon, melioidosis is a largely neglected disease and has not been taken seriously by international public health organizations including the World Health Organization. New antibiotic alternatives are actually needed to treat B. pseudomallei infections due to its high lethality once transmitted.
My research project is focused on the synthesis of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) derivatives as potential inhibitors of exopolysaccharide (EPS) biosynthesis process. EPS is an important virulence factor for B. pseudomallei. By blocking its incorporation into the bacteria biofilm, we hope to destabilize its growth or even facilitate the incorporation of actual antibiotic treatments. In a multidisciplinary work involving the participation of experts in carbohydrate chemistry and microbiology, new Kdo-like molecules will be synthetized and tested in in vitro as well as in vivo in order to evaluate their antibiotic potential. This work could ultimately lead to a new generation of antibiotic molecules able to treat effectively melioidosis.
Research team
Name: Oscar Gamboa, MSc
Supervisor: Charles Gauthier (INRS)
Laureate: Master scholarship 2018